25 | 0 | 32 |
下载次数 | 被引频次 | 阅读次数 |
数智化时代,人工智能技术在体育与健康课程学习评价中的应用展现了其独特优势和广阔潜力。运用可视化工具CiteSpace和文献计量法,分析“Web of Science”核心合集数据库2016-2024年间280篇相关学术论文,揭示国际人工智能赋能体育与健康课程学习评价领域的研究热点与趋势。研究发现:(1)人工智能技术赋能体育与健康课程学习评价领域的热点围绕系统、深度学习、物联网等方面,重点关注人工智能赋能体育与健康课程学习评价的数据决策精准化、主体参与多元化以及分析模型系统化。(2)从研究趋势来看,人工智能赋能体育与健康课程学习评价研究经历了初期探索(2016-2017年)、技术集成(2018-2020年)、技术深化与应用拓展(2021-2022年)、前沿趋势与新兴热点涌现(2023-2024年)四个阶段。(3)构建科学可测量的体育与健康课程学习评价指标体系、开发智能化体育与健康课程学习评价系统、构建多元主体参与的体育与健康课程学习评价机制以及建立“结果-过程-增值”一体化的体育与健康课程学习评价方式等,将成为未来人工智能赋能体育与健康课程学习评价研究的新兴热点。
Abstract:In the era of digitalization, the application of artificial intelligence technology in the learning assessment of physical education and health courses has shown its unique advantages and broad potential. Using the visualization tool CiteSpace and bibliometric method, the study analyzes 280 related academic papers in the “Web of Science” core collection database from 2016 to 2024 to reveal the research hotspots and trends in the field of learning evaluation of physical education and health courses empowered by international artificial intelligence. It is found that:(1) the hotspots in the field of AI-enabled learning evaluation of physical education and health courses revolve around systems, deep learning, and Internet of Things, focusing on the precision of data decision-making, the diversification of subject participation, and the systematization of analysis models in AI-enabled learning evaluation of physical education and health courses;(2) In terms of research trends, the researches have gone through four stages: initial exploration(2016-2017), technology integration(2018-2020), technology deepening and application expansion(2021-2022), and emergence of frontier trends and emerging hotspots(2023-2024).(3) Constructing a scientific and measurable PE and health course learning evaluation index system, developing an intelligent PE and health course learning evaluation system, constructing a PE and health course learning evaluation mechanism with the participation of multiple subjects, and establishing a “result-process-value-added” evaluation system will become the emerging hotspots of the future research on the learning evaluation of AI-enabled PE and health courses.
[1] 季浏.我国《义务教育体育与健康课程标准(2022年版)》解读[J].体育科学,2022,42(5):3-17.
[2] 李树旺,路嘉明,凌骏明,等.新质生产力视域下体育产业高质量发展的理论路径与研究范式[J].武汉体育学院学报,2024,58(6):9-16,88.
[3] 陈长洲,王红英,项贤林.新中国70年中、小学体育教学的范式转型——从“教受范式”到“导学范式”再到“对话范式”[J].天津体育学院学报,2020,35(2):169-174.
[4] Li W.Application of IoT-enabled computing technology for designing sports technical action characteristic model[J].Soft Computing,2023,27(17):12807-12824.
[5] Liang J M,Su W C,Chen Y L,et al.Smart interactive education system based on wearable devices[J].Sensors,2019,19(15):3260.
[6] Wang Y,Lu S,Harter D.Towards collaborative and intelligent learning environments based on eye tracking data and learning analytics:A survey[J].IEEE Access,2021,9:137991-138002.
[7] Cui J,Du H,Wu X.Data analysis of physical recovery and injury prevention in sports teaching based on wearable devices[J].Preventive Medicine,2023,173:107589.
[8] 何玲玲,赵航,覃国友.新课标背景下中小学生体育核心素养的培育[J].体育教育学刊,2023,39(4):26-32.
[9] Baena-Morales S,González-Víllora S.Physical education for sustainable development goals:Reflections and comments for contribution in the educational framework[J].Sport,Education and Society,2023,28(6):697-713.
[10] Ma Z,Xin C,Zheng H.Construction of a teaching system based on big data and artificial intelligence to promote the physical health of primary school students[J].Mathematical Problems in Engineering,2021(1):9777862.
[11] Zong X,Lipowski M,Liu T,et al.The sustainable development of psychological education in students’ learning concept in physical education based on machine learning and the internet of things[J].Sustainability,2022,14(23):15947.
[12] Bao L,Yu P.Evaluation method of online and offline hybrid teaching quality of physical education based on mobile edge computing[J].Mobile Networks and Applications,2021,26(5):2188-2198.
[13] Xu Q,Yin J.Application of random forest algorithm in physical education[J].Scientific Programming,2021:1996904.
[14] Guangde Z.Physical education and emergency response system using deep learning:A step toward sustainable development of physical education environment[J].Frontiers in Environmental Science,2022,10:974291.
[15] Hu R.IoT-based analysis of tennis player’s serving behavior using image processing[J].Soft Computing,2023,27(19):14413-14429.
[16] Lindberg R,Seo J,Laine T H.Enhancing physical education with exergames and wearable technology[J].IEEE transactions on Learning Technologies,2016,9(4):328-341.
[17] Dijkhuis T B,Blaauw F J,Van Ittersum M W,et al.Personalized physical activity coaching:a machine learning approach[J].Sensors,2018,18(2):623.
[18] Lee H S,Lee J.Applying artificial intelligence in physical education and future perspectives[J].Sustainability,2021,13(1):351.
[19] Yunxing W.The automatic evaluation model of physical education teaching based on two screening algorithms[J].Journal of Intelligent & Fuzzy Systems,2019,37(5):5945-5953.
[20] Jianbang G,Changxin S.Real-time monitoring of physical education classroom in colleges and universities based on open IoT and cloud computing[J].Journal of Intelligent & Fuzzy Systems,2021,40(4):7397-7409.
[21] Liu T,Wilczyńska D,Lipowski M,et al.Optimization of a sports activity development model using artificial intelligence under new curriculum reform[J].International Journal of Environmental Research and Public Health,2021,18(17):9049.
[22] Xiong X.A new physical education teaching system and training framework based on human-computer interaction and auxiliary interaction[J].International Journal of Emerging Technologies in Learning (Online),2021,16(14):38.
[23] Gao C,Cheng S.The deep learning model for physical intelligence education and its functional realization path[J].Soft Computing,2023,27(15):10827-10838.
[24] Zeng B,Zhao J,Wen S.A textual and visual features-jointly driven hybrid intelligent system for digital physical education teaching quality evaluation[J].Mathematical Biosciences and Engineering,2023,20(8):13581-13601.
[25] He Q,Chen H,Mo X.Practical application of interactive AI technology based on visual analysis in professional system of physical education in universities[J].Heliyon,2024,10(3):e24627.
[26] 刘清堂,何皓怡,吴林静,等.基于人工智能的课堂教学行为分析方法及其应用[J].中国电化教育,2019(9):13-21.
[27] Tang J,Hai L.Construction and exploration of an intelligent evaluation system for educational APP through artificial intelligence technology[J].International Journal of Emerging Technologies in Learning,2021,16(5):17.
[28] 刘超,董翠香,田来,等.基于中国健康体育课程模式的体育课堂教学行为评价指标体系构建[J].天津体育学院学报,2021,36(4):427-434.
[29] Srivastava N,Nawaz S,Newn J,et al.Are you with me?Measurement of learners’ video-watching attention with eye tracking[C]//LAK21:11th international learning analytics and knowledge conference.2021:88-98.
[30] Burchartz A,Anedda B,Auerswald T,et al.Assessing physical behavior through accelerometry-state of the science,best practices and future directions[J].Psychology of Sport and Exercise,2020,49:101703.
[31] Ray P P.A deep introspection into the role of ChatGPT for transforming hospitality,leisure,sport,and tourism education[J].Journal of Hospitality,Leisure,Sport & Tourism Education,2024,35:100504.
[32] 宋宇,许昌良,朱佳,等.面向思维培养:基于精准标注技术的智能化课堂教学分析及应用[J].华东师范大学学报:教育科学版,2023,41(8):79-89.
[33] Tabuenca B,Serrano-Iglesias S,Martin A C,et al.Affordances and core functions of smart learning environments:A systematic literature review[J].IEEE Transactions on Learning Technologies,2021,14(2):129-145.
[34] Kwilinski A,Lyulyov O,Dzwigol H,et al.Integrative smart grids’ assessment system[J].Energies,2022,15(2):545.
[35] 李梦,徐洁.智能技术赋能中小学德育增值性评价:内涵解析与应用框架[J].教育学术月刊,2023(3):64-70.
[36] Li C,Zhang C.Transformative perspectives in physical education evaluation:Empowering diverse stakeholders for holistic learning experiences in the era of big data[J].Journal of the Knowledge Economy,2024,15(3):13334-13360.
[37] 刘玉财,李乐虎.教育数字化背景下高校公体教师教学能力的发展[J].体育教育学刊,2024,40(1):40-45.
[38] Ezugwu A E,Ikotun A M,Oyelade O O,et al.A comprehensive survey of clustering algorithms:State-of-the-art machine learning applications,taxonomy,challenges,and future research prospects[J].Engineering Applications of Artificial Intelligence,2022,110:104743.
[39] Behera A,Matthew P,Keidel A,et al.Associating facial expressions and upper-body gestures with learning tasks for enhancing intelligent tutoring systems[J].International Journal of Artificial Intelligence in Education,2020,30:236-270.
[40] 张进良,杨苗,谈桂芬.智能技术赋能基础教育评价改革的实然困境与路径选择[J].中国远程教育,2023,43(2):18-27.
基本信息:
DOI:10.16419/j.cnki.42-1684/g8.2025.03.008
中图分类号:G807;G353.1;G434
引用信息:
[1]杨帆,刘超.国际近10年人工智能赋能体育与健康课程学习评价研究进展——兼论我国“人工智能赋能体育与健康课程学习评价”研究的深化路径[J].体育教育学刊,2025,41(03):87-94+2.DOI:10.16419/j.cnki.42-1684/g8.2025.03.008.
基金信息:
教育部人文社会科学研究青年项目(22YJC890013); 江苏省社会科学基金青年项目(22TYC003)